Approximating the Chromatic Number of a Graph by Semidefinite Programming∗

نویسنده

  • NEBOJŠA GVOZDENOVIĆ
چکیده

We investigate hierarchies of semidefinite approximations for the chromatic number χ(G) of a graph G. We introduce an operator Ψ mapping any graph parameter β(G), nested between the stability number α(G) and χ G , to a new graph parameter Ψβ(G), nested between ω(G) and χ(G); Ψβ(G) is polynomial time computable if β(G) is. As an application, there is no polynomial time computable graph parameter nested between the fractional chromatic number χ∗(·) and χ(·) unless P=NP and, based on Motzkin-Straus formulation for α(G), we give quadratic and copositive programming formulations for χ(G). Under some mild assumption, n/β(G) ≤ Ψβ(G) but, while n/β(G) remains below χ∗(G), Ψβ(G) can reach χ(G) (e.g., for β(·) = α(·)). We define new lower bounds for χ(G) which we test on Hamming graphs and on some benchmark graphs. Our preliminary experimental results indicate that the new bounds can be much stronger than the classic bound θ G (and its strengthenings obtained by adding nonnegativity and triangle inequalities).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 Parallel Semidefinite Programming and Combinatorial Optimization STEVEN

The use of semidefinite programming in combinatorial optimization continues to grow. This growth can be attributed to at least three factors: new semidefinite relaxations that provide tractable bounds to hard combinatorial problems, algorithmic advances in the solution of semidefinite programs (SDP), and the emergence of parallel computing. Solution techniques for minimizing combinatorial probl...

متن کامل

Computing Multiplicative Zagreb Indices with Respect to Chromatic and Clique Numbers

The chromatic number of a graph G, denoted by χ(G), is the minimum number of colors such that G can be colored with these colors in such a way that no two adjacent vertices have the same color. A clique in a graph is a set of mutually adjacent vertices. The maximum size of a clique in a graph G is called the clique number of G. The Turán graph Tn(k) is a complete k-partite graph whose partition...

متن کامل

The distinguishing chromatic number of bipartite graphs of girth at least six

The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling   with $d$ labels  that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...

متن کامل

Lower Bounds for Measurable Chromatic Numbers

The Lovász theta function provides a lower bound for the chromatic number of finite graphs based on the solution of a semidefinite program. In this paper we generalize it so that it gives a lower bound for the measurable chromatic number of distance graphs on compact metric spaces. In particular we consider distance graphs on the unit sphere. There we transform the original infinite semidefinit...

متن کامل

Bounds on entanglement dimensions and quantum graph parameters via noncommutative polynomial optimization

In this paper we study bipartite quantum correlations using techniques from tracial polynomial optimization. We construct a hierarchy of semidefinite programming lower bounds on the minimal entanglement dimension of a bipartite correlation. This hierarchy converges to a new parameter: the minimal average entanglement dimension, which measures the amount of entanglement needed to reproduce a qua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005